10 Apr 2025

coupled mode theory

$$ \left[\nabla^2 + n^2k_0^2\right]\psi = 0 $$
$$ \partial_z^2\psi=\left[\nabla^2_\perp + \sum_{m}n_m^2k_0^2\right]\psi $$
$$ \beta_m^2u_m(x,y)=\left[\nabla^2_\perp + n_m^2k_0^2\right]u_m(x,y) $$
$$ \psi(x,y,z)=\sum_{m}a_m(z)u_m(x,y)e^{-i\beta_m z}=\sum_{m}A_m(z)u_m(x,y) $$
plugging on Eq(2) and using slowly varying envelope approximation(SVEA, $ \partial_za ยป \partial_z^2a $) yields
$$ \sum_{m}2i\beta_m\frac{da_m(z)}{dz}u_m e^{-i\beta_m z} = -\sum_{m}\Delta n^2 k_0^2 a_m u_m e^{-i\beta_m z} $$

now projection assuming mode orthonormality $\int u_m^*u_pdxdy=\delta_{pm}$ gives

$$ i\frac{da_p(z)}{dz} = \sum_{m}\kappa_{pm} e^{i(\beta_p-\beta_m)z} a_m $$

where $\kappa_{pm} = \frac{1}{2\beta_p}k_0^2\int dxdy (n^2-n_m^2)u^*_p(x,y)u_m(x,y) // (n^2-n^2_m \text{ can be considered as } n_p^2)$ is coupling coefficient

with $A_m=a_me^{-i\beta_mz}$,

$$ i\frac{d\bf{A}}{dz}=\bf{H}\bf{A} $$

where $H_{pm}=\beta_p\delta_{pm} + \kappa_{pm}$

therefore supermodes satisfy

$$ \begin{align} \bf{A}=\bf{v}e^{-i\beta z} \\ \bf{Hv}=\beta\bf{v} \\ \beta \in eig(\bf{H}) \end{align} $$

-->
-->